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CLASS – VIII to X 

Note : 
1. gcd(a, b) denotes the greatest common divisor of integers a and b. 
2. x    denotes the largest integer less than or equal to x. 

3. For a positive real number m, m  denotes the positive square root of m. For example. 
4 2= +  

4. Unless otherwise stated all numbers ae written in decimal notation. 
 

 
Questions with Solutions 

 
1. The smallest positive integer that does not divide 1 × 2 × 3 × 4 × 5 × 6 × 7 × 8 × 9 is 

Ans. (11) 

Sol. 1 × 2 × 3 × 4 × 5 × 6 × 7 × 8 × 9 × 9! 

 9! = 27 × 34 × 51 × 71 

 ∴ Smallest prime factor that not divide 91 is 11. 

2.  The number of four-digit odd numbers having digits 1,2,3,4 each occurring exactly once, is: 

Ans.  (12) 

Sol.  

 
3 2 1 2

ways ways ways ways

− − − −
↑ ↑ ↑ ↑

 

 ∴ Total no. of ways = 3 × 2 × 1 × 2 = 12 

3. The number obtained by taking the last two digits of 52024 in the same order is 

Ans. (25) 

Sol. Last two digits of 52024 = 52024 mod 100 ⇒  52 = 25.53 =125,54 = 625 

 ∴ for 5n for n more than 2, last two digits are 25 

4. Let ABCD be a quadrilateral with ∠ADC = 70º, ∠ACD = 70º, ∠ACD = 10º and ∠BAD = 
110º. The measure of ∠CAB (in degrees) is 

Ans. (70) 

Sol.  
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 ∠D + ∠ACD + ∠DAC = 180º 

 ∠DAC = 40º So, ∠CAB = 70° 

 ∴∠CAB + ∠CAD = ∠DAB 

 ∴y + 40º = 110º    ∴ y = 70º 

5. Let x y za
y z x

= + + , let x y zb
z x y

= + +  and let x y y z z xc
y z z x x y

    = + + +    
    

.  

 The value of |ab − c| is 

Ans. (1) 

Sol. x y za
y z x

= + +  x y zb
z x y

= + +  x y y z z xc
y z z x x y

    = + + +    
    

 

 
2 2

2 2 2 2
x xz xy xy zy zab 1 1 1
yz xyy z x x

= + + + + + + + +
2 2 2

2 2 2
x y z xz xy zy3
yz xz xy y z x

= + + + + + +  

 
3 3 3

2 2 2
x y z xz xy zy3

xyz y z x
+ +

= + + + +  

 
2

2
x z y y z xc
z y x x yz

   
= + + + +  

  

2 2 2 2

2 2 2 2
x z zx y z xy yz2
yz xy y xz yz x

= + + + + + +  

 |ab − c| = 
3 3 2 3 3 3 2

2 2 2 2 2 2
x y z xz xy zy x z y zx xy y3 2

xyz xyz xyz xyzy z x y x x
+ +

= + + + + − − − − − − − = 1 

6. Find the number of triples of real numbers (a, b, c) such that a20 + b20 + c20  

 = a24 + b24 + c24 = 1 

Ans. (6) 

Sol.  a20 + b20 + c20 = a24 + b24 + c24 = 1 

 As a20 ≤  a24  

 ∴ even power ⇒  a, b, c should be either 0, 1 or –1 

 If a = 1 or a = − 1 ∴ a20 or a24 = 1 

 If b = 0 then b24 = b20 =  0 & c = 0 

 ∴ Possible solutions are :  

 a = ± 1, b =  0,  c = 0 

 a = 0 b = ± 1 c = 0 

 a = 0 b = 0 c = ± 1  

 ∴ Total No of Solutions 6 
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7.  Determine the sum of all possible surface areas of a cube two of whose vertices are (1,2,0) 
and (3,3,2)  

Ans.  (99) 

Sol.  A ≡  (1, 2, 0),  B ≡  (3,3,2) 

 AB 4 1 4 3= + + =  

 AB will be either side, face diagram or main diagonal of cube. 

 So Case 1: AB is side →  S.A. =  6×(3)2 = 54 

 Case 2 : AB is main diagonal : 3a 3 a 3= ⇒ =  

 Surface area = 6 × 3 = 18 

 Case – 3 : AB face diagonal : 32a 3 a
2

= ⇒ =   

 Surface are = 6 × a2 = 93 27
2

× =  

 So, sum of different possible surface area = 54 + 18 + 27 = 99 

8.  Let n be the smallest integer such that the sum of digits of n is divisible by 5 as well as the 
sum of digits of (n + 1) is divisible by 5 . What are the first two digits of n in the same order? 

Ans.  (49) 

Sol.  n = 49999 

 ∴ Sum = 4 + 9 + 9 + 9 + 9 = 40 divisible by 5 

 n = 50000 sum is 5 divisible by 5 

 So, 1st 2 digits of n is 49 

9.  Consider the grid of points X ={(m, n)∣ 0 ≤m, n ≤  4}.  

 We say a pair of points {(a, b), (c, d)}in X is a knight-move pair if ( c = a ±  2 and d = b ± 1 ) 
or (c = a ± 1 and d = b ±  2 ). The number of knight-move pairs in X is:  

Ans.  (48) 

Sol.  (0, −1) →  (3, 1), (1, 2)  2 

 (1, +0) →  (3, 1), (1, 2), (2, 0)  3 

 (2, 0) →  (3, 2), (1, 2), (4, 1), (0, 1)  4 

 (3, −0) →  (4, 2), (2, 2), (1, 0)  3 

 (4, 0) →  (0, 1), (3, 2)  2 

 

 

 



 
 

 
 

CLASS – VIII to X 

 

 R1 gives 14 ordered pairs. 

 R2 gives 20 ordered pairs. 

 R3 gives 28 ordered pairs. 

 R4 gives 20 ordered pairs. 

 R5 gives 14 ordered pairs. 

 = 96 

 So, total unordered pairs = 48 

10.  Determine the number of positive integral values of p for which there exists a triangle with 
sides a, b, and c which satisfy a2 + (p2 + 92) b2 + 9c2) − 6ab − 6pbc = 0 

Ans.  (5) 

Sol.  a2 + (p2 + 9)b2 + 9c2 − 6ab − 6pbc = 0 

 a2 − 6ab + 9b2 + p2b2 + 9c2 − 6pbc = 0 

 (a − 3b)2 + (pb − 3c)2 = 0 ⇒a = 3b & pb = 3c ⇒ a cb
p3
3

= = = λ
 
 
 

 

 Applying triangular inequality, 

 p3 p 6
3
λ

λ + > λ ⇒ > −  

 p3 12 p
3
λ

λ + λ > ⇒ >  

 p 3 p 6
3
λ
+ λ > λ ⇒ > 6 p 12⇒ < <  

 So, value of p is 05. 

11. The positive real numbers a, b, c, satisfy :  

 a 2b 3c 1
2b 1 3c 1 a 1

+ + =
+ + +

; 1 1 1 2
a 1 2b 1 3c 1

+ + =
+ + +

 

 What is the value of 1 1 1 ?
a b c
+ +  

Ans. (12) 
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Sol. Equ. (1) × (2) 

 2a 4b 6c 2
2b 1 3c 1 a 1

+ + =
+ + +

 …………. (A) 

 1 1 1
2b 1 3c 1 a 1

+ +
+ + +

 ……………. (B) 

 Then, Equ. (A) − Equ. (B), we get 

 2a 1 4b 1 6c 1 0
2b 1 3c 1 a 1

− − +
+ + =

+ + +
 

 As a, b, c > 0 = 2a − 1= 4b − 1 = 6c − 1 = 0 ⇒a = 1
2

, b = 1
4

, c = 1
6

 

 ∴  1 1 1 2 4 6 12
a b c
+ + = + + =  

 Alternative solutions 

 Let, a + 1 = x, 2b + 1 = y, 3c + 1 = z 

 x 1 y 1 z 1 1
y z x
− − −

+ + =  

 1 1 1 2
x y z
+ + =

x y z 3
y z x

⇒ + + =  

 But by AM ≥  GM (as x, y, z > 0) 

 x y z 3
y z x
+ + ≥  and equality holds iff x = y = z ⇒a + 1 = 2b + 1 = 3c + 1 ⇒  a = 2b + 3c = 1

2
 

 1 1 1 1
a b c 12

∴ + + =  

12. Consider a square ABCD of side length 16. Let E, F be points on CD such that CE = EF =  
FD 

 Let the line BF and AE meet in M. The area of ∆ MAB is 

Ans. (96) 

Sol.  
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 The side of a sequence is 16 

 Then, 

 CF = EF = DE = 16
3

 

 Let MN = h,  

 Then, LM = 16 − h 

 Now, ∆ MEF  ∆ MAB 

 ∴ 16 h 16
16h
3

−
=  ⇒  16 − h = 3h ⇒  h = 4 

 ( ) ( )1MAB 8 24 96sq.unit
2

∴ ∆ = × × =  

13. Three positive integers a, b, c with a > c satisfies the following equations:  

 ac + b + c = bc + a + 66, a + b + c = 32 Find the value of a. 

Ans. (19) 

Sol:  ac + b + c = bc + a + 66, a + b + c = 32 

 ⇒  ac + b + c – bc – a = 66 ⇒  c (a + 1) + b (1- c) – 1- a = 65 

 ⇒  (c -1) (1 + a) + b (1 - c) = 65 = (c - 1) (1 + a - b) = 65 

 = (c - 1) (1 + a - b) = 1 × 65 × 5 × 13 = 13 × 5 = 65 × 1 
 

 (c − 1) (1 + a − b) (a, b, c)  

Case – 1 1 65 (47, −17, 2) 
Note possible as a, b, c are +ve 
integers 

Case – 2 5 13 (19, 7, 6) 
Possible as all given conditions are 
satisfied 

Case – 3 13 5 (11, 7, 14) Not possible as a > c 

Case – 4 65 1 (−17, −17, 
66) 

Note possible as a, b are +ve 
integers 

 Only Possible value of a = 19 
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14. Initially, there are 380 particles at the origin (0, 0). At each step the particles are moved to 

points above the x - axis as follows: if there are n particles at any point (x, y), then n
3
 
  

 of  

them are moved to  (x +1, y + 1) n
3
 
  

are  and the remaining to (x-1, y+1). 

 For example, after the first step, there are 379 particles each at (1,1), (0, 1) and (−1, 1). After 

the second step, there are 378 particles each at (−2, 2) and  (2, 2), 2×378 particles each at (−1, 
2) and (1, 2), and 379 particles at (0, 2). After 80 steps, the number of particles at (79, 80) is: 

Ans. (80) 

Sol: 1→379 379 379  

 2 →  378 , 2.378 , 3.378 , 2.378 378  

 3 →  377 , 3.377 , 6.377 , 7.377,  6.377, 3.377 377  

 After 79th step (79,79) has 3 particles & (78,79) has 79 × 3 Particles 

 After 80th step (79,80) has 79 3 3 80
3 3
×

+ =  

15. Let X be the set consisting of twenty positive integers n, n + 2, ……,n+38. The smallest value 
of n for which any three numbers a, b, c∈X , not necessarily distinct, form the sides of an 
acute-angled triangle is: 

Ans. (92) 

Sol: Sides: n, n, n + 38 

 n + n > n + 38 ⇒n > 38 

  It is acute 

 n2 + n2 >  (n + 38)2 ⇒n2 − 76n > 382 

 n − 38 > 2.38  

 n > 91 

 Therefore smallest n = 92 

16. Let f : R→R be a function satisfying the relation 2 4 f (3− x) +3 f (x) = x2 for any real x. Find 

the value of f (27)− f (25) to the nearest integer. (Here denotes the set of real numbers.) 

Ans. (8) 

Sol: f : R→R is a function such that  

 4 f(3 – x) + 3f(x) = x2 
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 Replace x by 3 – x,  

 Then 4 f(x) + 3 f(3 – x) = (3 – x)2 

 On solving 1 and 2 

 ( ) ( )2 24 3 x 3x
f x

7
− −

= ⇒ ( )
2x 24x 36f x

7
− +

=  

 ( ) ( ) ( ) ( )2 21f 27 f 25 27 25 24 27 25
7
 − = − − −  [ ]1 2 52 48

7
= × −  56 8

7
= =  

 So, required value to nearest integer = 8 

17. Consider an isosceles triangle ABC with sides BC = 30, CA = AB = 20. Let D be the foot of 
the perpendicular from A to BC, and let M be the midpoint of AD. Let PQ be chord of the 
circumcircle of triangle ABC, such that M lies on PQ and PQ is parallel to BC. The length of 
PQ is: 

Ans. (25) 

Sol. In right ∆ PAK 

 PM2 = AM.MK 

 

 5 7 80 7 5 7
2 7 2

 
= −  

 
 5 7 1257

2 14
= × ×  625

2
=  

 PM = 25
2

= PQ = 2PM = 25 

18.  Let p, q be two-digit numbers neither of which are divisible by 10. Let r be the four-digit 
number by putting the digits of p followed by the digits of q (in order). As p, q vary, a 
computer prints r on the screen if gcd(p,q) = 1 and p + q divides r . Suppose that the largest 
number that is printed by the computer is N . Determine the number formed by the last two 
digits of N (in the same order). 

Ans. (13) 
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Sol:  p + q |100p + q ⇒  p + q | 99p 

 As (p, q) = 1 =  (p + q, p)⇒p + q∣99 

 ∴ For largest value, p + q = 99. 

 q can’t be 10. 

 If q = 11⇒  p = 88 but (p, q) = 11 

 So q = 12 p = 87 but (12, 87) =  3≠ 1 

 ∴ q  = 13 & p = 86 so N = 8613 

19. Consider five points in the plane, with no three of them collinear. Every pair of points among 
them is joined by a line. In how many ways can we color these lines by red or blue, so that no 
three of the points form a triangle with lines of the same color. 

Ans. (12) 

Sol: If from same vertex suppose we get 3 Blue say AC, AB, AD are all blue, then we can’t color 
any of edge BC, BD, CD blue. So they all are red, and we get red ∆  

 

 Hence no 3 edges from any vertex are all of same colors, so each vertex has 2R &2B edges 
so there are 4C2 ways to select colours of edges from the vertex A. 
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 If AB, AD & AC, CE are red then, BD is red & CE is Blue and DC can be any colour R or B 

 

 Hence there are 6 × 2 = 12 ways 

20. On a natural number n you are allowed two operations: (1) multiply n by 2 or (2) subtract 3 
from n. For example, starting with 8 you can reach 13 as follows: 8→16→13 . You need two 
steps and you cannot do in less than two steps. Starting from 11, what is the least number of 
steps required to reach 121? 

Ans. (10) 

Sol:  Reformulate the problem to reaching 11 starting from 121 by option:- 

 a) Divide n by 2 

 b) Add 3 to n. 

 Clearly, since 121 is a large number. Optimal solution would maximize the repetition of a). 

 

21. An integer n is such that n
9
 
  

 is a three digit number with equal digit, and n 172
4
− 

  
 is a 4 

digit number with the digits 2, 0, 2, 4 in some order. What is the remainder when n is divided 
by 100 ? 

Ans. (91) 
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Sol. n 3
9
  =  

 digit number with equal digits 

 ( )n 100 10 1 K 111k
9
 ⇒ = + + =  

n111k 111k 1
9

⇒ ≤ < + 999k n 999k 9⇒ ≤ < + +  

 Where k = 1, 2, 3, 4, 5, ……7 

 nmax = 8991 + 9 = 9000 n 1722024 4220
4
− ⇒ ≤ ≤  

n 1722024 4221
4
−

⇒ ≤ <  

 8096 ≤  n − 172 ≤ 16884 

 8268 ≤  n < 17056 

 From (A) only possible values of n exist when k = 9. 

 For k = 9 ⇒  8991 ≤  n < 8991 + 9 

 So n = 8991 

 When n is divided by 100 remainder is 91 

22. In a triangle ABC, ∠BAC = 90º, Let D be the point on BC such that AB + BD = AC + CD. 

 Suppose BD : DC = 2 : 1.  

 If m pAC
AB n

+
= , where m, n are relatively prime positive integers and p is a prime number, 

determine the value of m + n + p. 

Ans. (34) 

Sol.  

 

 x2 + y2 = 9z2 

 x + z = y + 2z ⇒x = y + z ⇒  x2 + y2 = 9(x − 4)2 

 x2 + y2 = 9x2 + 9y2 − 18xy 
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 4x2 + 4y2 − 9xy = 0 ⇒  
2x x4 9 4 0

4 4
   − + =   
   

x 9 81 64 9 17
y 8 8

± − +
⇒ = =  ⇒  m + n + p 

= 34 

23. Consider the fourteen numbers, 14, 24, …….., 144. The smallest natural number n such that 
they leave distinct remainders when divided by n is : 

Ans: (31) 

Sol : 14, 24, …….,144 

 x4 ≡  a(mod n) 

 y4 ≡  b(mod n) such that a ≠  b for x ≠  y and x, y∈{1, 2, …….14} 

 (x4 − y4) = (a − b)(mod n) 

 ⇒  (x − y)(x + y) (x2 + y2) = (a − b)(mod n)⇒  n | (x − y)(x + y) x2 + y2 …………(i) 

 We have to find minimum n with condition (i) 

 Clearly, n > 27 as (x + y)∈{3, …….27} 

 Now n = 28, x = 6, y = 8 works 

 n = 29, x = 5, y = 2 works 

 n = 30, x = 8, y = 2 works 

 for x = 31, there are no such x, y, 

 ( ) ( ) ( )2 2

Must be prime tactor

31| x y x y x y− + +


 

 31|(x2 + y2) and 31| (x − y)(x + y) ⇒  31 will be the answer 

24. Consider the set F of all polynomials whose coefficients are in the set of {0, 1}. 

 Let q(x) = x3 + x + 1. 

 The number of polynomials p(x) in F of degree 14 such that the product p(x)q(x) is also in F 
is 

Ans. (50) 

Sol.. p(x)q(x) = (x14 + ….)(x3 + x + 1) 

 P(x) = x14 →1 case 

 P(x) = x14 + xα  

 Where α = 10, 9, 8, …… 1, 0 →  11 case 
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α  = 10, 
α  = 9, 
α  = 8, 
α  = 7, 
α  = 6, 
α  = 5, 
α  = 4, 

β  = 6, 5, 4, 3, 2, 1, 
0 

β  = 5, 4, 3, 2, 1, 0 
β  = 4, 3, 2, 1, 0 
β  = 3, 2, 1, 0 
β  = 2, 1, 0 
β  = 1, 0 
β  = 0 

}
 

→28 cases 

 ( ) 14p x x x x xα β γ= + + +  

α  = 10, 
α  = 10, 
α  = 10, 

 β  = 6 γ  = 2, 1, 0 
 β  = 5 γ  = 1, 0 
 β  = 4 γ  = 0 }

 

→6 cases 

α  = 9, 
 
 

 β  = 5 γ  = 1, 0 
 β  = 4 γ  = 0 
 

}
 

→3 cases 

 }8, 4, 0 1 casesα = β = γ = →  

 Hence, total case = 1 + 11 + 28 + 6 + 3 + 1 = 50 cases 

25. A finite set M of positive integers consists of distinct perfect squares and the number 92. The 
average of the numbers in M is 85. If we remove 92 from M, the average drops to 84. If N2 is 
the largest possible square in M, what is the value of N ? 

Ans. (22) 

Sol. { }2 2 2
1 2 kM a ,a ,.....a ,92=  

 2 2 2
1 2 ka ,a ,.....a 92 85(k 1)+ = +  

 2 2 2
1 2 ka ,a ,.....a 84k= 92 85k 85 84k k 7⇒ = + − ⇒ =  

 84 × 7 =12 + 22 + 32 + 42 + 52 + 72 + 222 = 588 

 N = 22 

26. The sum of x    for all real numbers x satisfying the equation 16 + 15x + 15x2 = x  
3 is  

Ans. (33) 

Sol. As      x − 1 < [ ]x ≤ x 

 So  x3 ≥ 15x2 + 15x + 16 gives x≥ 16 
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 So possible value of x are 16, 17 

 ∴   sum of x = 33 

27. In a triangle ABC, a point P in the interior of ABC is such that ∠BPC − ∠BAC = ∠CPA − 
∠CBA 

 = ∠APB − ∠ACB 

 Suppose ∠BAC = 30º and AP = 12. Let D, E, F be the feet of perpendiculars form P on to 

BC, CA, AB respectively. If m n  is the area of the triangle DEF where m, n are integers with 
n prime, then what is the value of the product mn ? 

Ans. (27) 

Sol.  

 

 1 1 1α − α = β − β = γ − γ = θ  (Say), Given 1 6
π

α =  

 Observe AFPE is cyclic 1
1

sin 1 1EF AP sin 12 6
EF AP 2
α

⇒ = ⇒ = α = × =  

 1 1 1 3α + β + γ = α + β + γ + θ  

 2 3
3
ππ = π + θ⇒ θ = 


1 3 2
π π

⇒ α = α + =  

 By angle change we get ∠FDE = 60º  

 If the area is constant irrespective of the position of P then for AP = 12 (P moving on circle 
with center A) a some position of P, DF = ED ⇒ ∆ DEF to be equilateral 

 Area ( )23 EF 9 3 mn 27
4

= = ⇒ =  
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28. Find the largest positive integer n < 30 such that 1
2

(n8 + 3n4 − 4) is not divisible by the 

square of any prime number 

Ans. (20) 

Sol. If n is odd n4 ≡  1(mod 8) 

 1
2

(n8 + 3n4 − 4) ≡  0 (mod 4) 

 So we want n even 

 If x2 + 3x − 4 = (x2 + 4)(x2 − 1) ≡  0 (mod b2) 

 φ 2| 1
2

(n8 + 3n4 − 4) = 1
2

(n4 + 4)(n4 − 1)= 1
2

(n4 + 4)(n2 + 1)(n + 1)(n − 1) 

 = 1
2

(n4 + 4)(n2 + 1)(n + 1)(n − 1)= 1
2

((n +1)2 + 1)((n − 1)2 + 1)(n + 1)(n − 1)(n2 + 1) 

 By trial and error 

 n = 28 32 | 27 = 28 − 1 

 n = 26 52 | 26 − 1 

 n = 24 52 | 24 + 1 

 n = 22 Exp = 1
2

(530)(484 + 1)(21)(23) 

 52 | Exp. 

 n = 20 Exp = 1
2

(442)(362)(21)(19)(401) 

 works 

29. Let n = 2919 312.  

 Let M denote the number of positive divisors of n2 which are less than n but would not divide 
n. What is the number formed by taking the last two digits of M (n the same order) ? 

Ans. (28) 

Sol. The divisor of n2 that does not divide n and is less than n will be of type 2a. 3b where a ≤ 38, 
b≤ 24 

 Now in order that if does not divide n  
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 Either a > 19 or b > 12 

 Consider divisor of type 219 + x, 312 − y 

 = n × 
x

y
2
3

> n if 2x > 3y 

 < n if 2x < 3y 

 For each (x, y), 1≤ x≤ 19 & 1≤ y≤ 12 

 There is unique required factor of n2 which is less then n & does not divide n. 

 No of such factor = 12 × 19 = 228 

 Ans = 28 

30. Let ABC be a right-angled triangled with ∠B = 90º. Let the length of the altitude BD be equal 
to 12. What is the minimum possible length of AC, given that AC and the perimeter of triangle 
ABC are integers ? 

Ans. (25) 

Sol. Let AC = m and perimeter is m + n 

 ⇒AB + BC = n 

 AB = msinθ , BC = mcosθ ⇒m(sinθ  + cosθ ) = n 

 m sinθcos θ  = 12 ⇒  m > 24 

  

 2 22 12m 1 n
m
× ⇒ + = 

 

2
2m (m 24) n

m
+

⇒ = ⇒m(m + 24) = n2 

 m = 25 & n2 = 49 × 25 
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